放射線関連支援技術情報

海域別・魚種別の放射性セシウム濃度

事業名 放射性物質除去・低減技術開発事業
小事業名 放射性物質が海面漁業へ与える影響
研究課題名 生態特性に応じた蓄積過程の解明
担当者 神山享一・藤田恒雄

Ⅰ 新技術の解説

Ⅰ-1 要旨
放射性物質の魚介類への影響を評価するため、福島県海域を図1に示す10海域に区分し、海域別・年別に放射性セシウム濃度（以下 Cs濃度）の最大値、平均値、基準値（100Bq/kg）を超えた検体の割合を整理した。また、全魚種と出荷制限が継続している魚種に分けて、それぞれ月別のCs濃度分布の推移を整理した。

(1) 2011年4月7日から2014年12月22日までに採取された178種、23,785検体について検査を行った（表1）。
(2) 海域別・年別では、全ての海域においてCs濃度の平均値と、基準値を超えた検体の割合が年毎に低下している。
(3) Cs濃度が高い傾向にある福島第一原発の前面とその南側の水深50mより浅い海域においてもCs濃度の低下は顕著であり、2014年には平均値が約20Bq/kg、基準値超過の割合が5%台まで低下している。その他の海域では、基準値の超過はほとんどになり、平均値が1〜9Bq/kg、基準値超過の割合が0〜0.3%まで低下している（表2）。
(4) 全魚種における月別のCs濃度分布は、基準値超過の割合が時間の経過とともに低下し、2013年5月以降は5%を下回り、2014年6月以降は1%を下回っている。51~100Bq/kgの割合は2011年10月まで増加したが、その後減少し、2014年末現在（以下、現在）は1%を下回っている。
(5) 出荷制限がかかる35種についても基準値超過の割合は減少傾向にあり、現在1%前後となっている。51~100Bq/kgの割合も2012年4月まで20〜30%で横ばいであったが、その後減少し、現在は1〜2%程度となっている。

(6) 上記の結果から、出荷制限が継続している魚種の Cs濃度分布と低下傾向は、全魚種のそれと比較しても大きな差はなくなりつつあり、放射性セシウムの影響は限定的になっている。

Ⅱ 期待される効果
(1) 出荷制限等指示の解除のための基礎資料となる。今年度はこれまで6魚種の出荷制限が解除された。
(2) 試験操業対象種を選定するための資料となる。今年度は23魚種が新たに対象種となった。
(3) 魚介類の放射性セシウム蓄積および排出過程を解明するための基礎資料として活用できる。

Ⅲ 活用上の留意点
特になし
Ⅱ 具体的データ等

表1 海産魚介類の検査結果概要
(2011年4月7日～2014年12月22日分)

<table>
<thead>
<tr>
<th>海域</th>
<th>魚種数</th>
<th>検査回数</th>
<th>合計</th>
<th>内100超</th>
<th>合計</th>
<th>内100超</th>
</tr>
</thead>
<tbody>
<tr>
<td>いわき</td>
<td>150</td>
<td>65</td>
<td>9,451</td>
<td>1,101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>相双</td>
<td>151</td>
<td>45</td>
<td>14,334</td>
<td>960</td>
<td></td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>178</td>
<td>73</td>
<td>23,785</td>
<td>2,061</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表2 魚介類の海域別・年別の検査結果概要

<table>
<thead>
<tr>
<th>年</th>
<th>海域</th>
<th>基準値 (100Bq/kg) 超過率(%)</th>
<th>平均値 (Bq/kg)</th>
<th>最大値 (Bq/kg)</th>
<th>検体数 (件)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011年</td>
<td>①</td>
<td>27.1</td>
<td>17.1</td>
<td>1,800</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>②</td>
<td>6.3</td>
<td>2.5</td>
<td>1,000</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td>③</td>
<td>62.3</td>
<td>10.8</td>
<td>1,000</td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>④</td>
<td>30.5</td>
<td>5.7</td>
<td>660</td>
<td>420</td>
</tr>
<tr>
<td></td>
<td>⑤</td>
<td>1.3</td>
<td>0.5</td>
<td>190</td>
<td>561</td>
</tr>
<tr>
<td></td>
<td>⑥</td>
<td>0.0</td>
<td>0.1</td>
<td>110</td>
<td>631</td>
</tr>
<tr>
<td></td>
<td>⑦</td>
<td>65.6</td>
<td>19.2</td>
<td>1,600</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>⑧</td>
<td>26.7</td>
<td>5.6</td>
<td>730</td>
<td>784</td>
</tr>
<tr>
<td></td>
<td>⑨</td>
<td>18.1</td>
<td>1.2</td>
<td>1,700</td>
<td>1,076</td>
</tr>
<tr>
<td></td>
<td>⑩</td>
<td>5.9</td>
<td>0.1</td>
<td>140</td>
<td>1,083</td>
</tr>
<tr>
<td></td>
<td>⑪</td>
<td>64.8</td>
<td>52.9</td>
<td>1,800</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>⑫</td>
<td>49.2</td>
<td>17.2</td>
<td>1,700</td>
<td>577</td>
</tr>
<tr>
<td></td>
<td>⑬</td>
<td>18.1</td>
<td>2.2</td>
<td>410</td>
<td>968</td>
</tr>
<tr>
<td></td>
<td>⑭</td>
<td>5.3</td>
<td>0.3</td>
<td>230</td>
<td>1,233</td>
</tr>
<tr>
<td></td>
<td>⑮</td>
<td>64.4</td>
<td>52.9</td>
<td>1,800</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>⑯</td>
<td>49.2</td>
<td>17.2</td>
<td>1,700</td>
<td>577</td>
</tr>
<tr>
<td></td>
<td>⑰</td>
<td>18.1</td>
<td>2.2</td>
<td>410</td>
<td>968</td>
</tr>
<tr>
<td></td>
<td>⑱</td>
<td>5.3</td>
<td>0.3</td>
<td>230</td>
<td>1,233</td>
</tr>
<tr>
<td></td>
<td>⑲</td>
<td>64.4</td>
<td>52.9</td>
<td>1,800</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>⑳</td>
<td>49.2</td>
<td>17.2</td>
<td>1,700</td>
<td>577</td>
</tr>
<tr>
<td></td>
<td>㉑</td>
<td>18.1</td>
<td>2.2</td>
<td>410</td>
<td>968</td>
</tr>
<tr>
<td></td>
<td>㉒</td>
<td>5.3</td>
<td>0.3</td>
<td>230</td>
<td>1,233</td>
</tr>
<tr>
<td></td>
<td>㉓</td>
<td>64.4</td>
<td>52.9</td>
<td>1,800</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>㉔</td>
<td>49.2</td>
<td>17.2</td>
<td>1,700</td>
<td>577</td>
</tr>
<tr>
<td></td>
<td>㉕</td>
<td>18.1</td>
<td>2.2</td>
<td>410</td>
<td>968</td>
</tr>
<tr>
<td></td>
<td>㉖</td>
<td>5.3</td>
<td>0.3</td>
<td>230</td>
<td>1,233</td>
</tr>
<tr>
<td></td>
<td>㉗</td>
<td>64.4</td>
<td>52.9</td>
<td>1,800</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>㉘</td>
<td>49.2</td>
<td>17.2</td>
<td>1,700</td>
<td>577</td>
</tr>
<tr>
<td></td>
<td>㉙</td>
<td>18.1</td>
<td>2.2</td>
<td>410</td>
<td>968</td>
</tr>
<tr>
<td></td>
<td>㉚</td>
<td>5.3</td>
<td>0.3</td>
<td>230</td>
<td>1,233</td>
</tr>
<tr>
<td></td>
<td>㉛</td>
<td>64.4</td>
<td>52.9</td>
<td>1,800</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>㉜</td>
<td>49.2</td>
<td>17.2</td>
<td>1,700</td>
<td>577</td>
</tr>
<tr>
<td></td>
<td>㉝</td>
<td>18.1</td>
<td>2.2</td>
<td>410</td>
<td>968</td>
</tr>
<tr>
<td></td>
<td>㉞</td>
<td>5.3</td>
<td>0.3</td>
<td>230</td>
<td>1,233</td>
</tr>
<tr>
<td></td>
<td>㉟</td>
<td>64.4</td>
<td>52.9</td>
<td>1,800</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>㊁</td>
<td>49.2</td>
<td>17.2</td>
<td>1,700</td>
<td>577</td>
</tr>
<tr>
<td></td>
<td>㊂</td>
<td>18.1</td>
<td>2.2</td>
<td>410</td>
<td>968</td>
</tr>
<tr>
<td></td>
<td>㊃</td>
<td>5.3</td>
<td>0.3</td>
<td>230</td>
<td>1,233</td>
</tr>
<tr>
<td></td>
<td>㊄</td>
<td>64.4</td>
<td>52.9</td>
<td>1,800</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>㊅</td>
<td>49.2</td>
<td>17.2</td>
<td>1,700</td>
<td>577</td>
</tr>
<tr>
<td></td>
<td>㊆</td>
<td>18.1</td>
<td>2.2</td>
<td>410</td>
<td>968</td>
</tr>
<tr>
<td></td>
<td>㊇</td>
<td>5.3</td>
<td>0.3</td>
<td>230</td>
<td>1,233</td>
</tr>
<tr>
<td></td>
<td>㊈</td>
<td>64.4</td>
<td>52.9</td>
<td>1,800</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>㊉</td>
<td>49.2</td>
<td>17.2</td>
<td>1,700</td>
<td>577</td>
</tr>
<tr>
<td></td>
<td>㊊</td>
<td>18.1</td>
<td>2.2</td>
<td>410</td>
<td>968</td>
</tr>
<tr>
<td></td>
<td>㊋</td>
<td>5.3</td>
<td>0.3</td>
<td>230</td>
<td>1,233</td>
</tr>
<tr>
<td></td>
<td>㊌</td>
<td>64.4</td>
<td>52.9</td>
<td>1,800</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>㊍</td>
<td>49.2</td>
<td>17.2</td>
<td>1,700</td>
<td>577</td>
</tr>
<tr>
<td></td>
<td>㊎</td>
<td>18.1</td>
<td>2.2</td>
<td>410</td>
<td>968</td>
</tr>
<tr>
<td></td>
<td>㊏</td>
<td>5.3</td>
<td>0.3</td>
<td>230</td>
<td>1,233</td>
</tr>
</tbody>
</table>

図1 海域区分

図2 放射性セシウム濃度の推移(全魚種)

図3 放射性セシウム濃度の推移(出荷制限35魚種)

※ 2011年は4月1日～12月31日、2012年は1月1日～12月31日、2013年は1月1日～12月31日
2014年は1月1日～12月22日現在
数値は放射性セシウム134と137の合計値。平均値は、不検出の検体を0として計算した。

III その他

1 執筆者
水産試験場 渔場環境部 神山 享一

2 実施期間
平成23年度 ～ 27年度

3 主な参考文献・資料
(1) 平成23年度 ～ 25年度福島県水産試験場事業概要書