オープンソースシミュレーションソフトを用いた磁場解析と評価

Magnetic field analysis and evaluation using open source simulation software

技術開発部 生産・加工科 鈴木健司 応募企業 株式会社 JMC

永久磁石を用いた異物除去装置の設計・開発に応用するため、オープンソースシミュレー ションソフトウェアのElmerを用いて、磁石まわりの磁場解析手法について調査を行った。 また、他のシミュレーションソフトによる結果やガウスメータによる磁場強度の測定結果 と比較を行い、解析結果の妥当性を評価した。

Key words: 磁場解析、有限要素法、コンピュータシミュレーション

1. 緒言

応募企業の株式会社 JMC は、製造工程などにおける 磁性体異物を、永久磁石を用いて除去するための装置 を設計・開発している。永久磁石やヨークの形状、組 み合わせを変えることで、異物を効率よく捕らえるた めの設計を行っているが、これまでの開発工程は試作 と実験によるもので、時間がかかっていた。設計・開 発の効率化を図るためには、コンピュータシミュレー ションを導入することが考えられるが、一般的なシ ミュレーションソフトは有料であり、シミュレーショ ンを行うためには、計算科学に関する知識とノウハウ が必要になる。

そこで本開発支援では、無料で利用できるオープン ソースソフトウェアである Elmer¹⁾を用いて、永久磁 石まわりの磁場分布を解析するための手法を調査した。 また、他のシミュレーションソフトによる結果やガウ スメータを用いて測定した磁場強度の結果と比較を行 い、シミュレーション結果の妥当性を評価した。得ら れたコンピュータシミュレーション手法に関する知見 を用いることで、設計・開発の効率化を図ることがで きると考えられる。

2. シミュレーション手法と結果

Elmer は、有限要素法と呼ばれる手法を用いて、流体力学、構造力学、電磁気学、熱伝導、音響学などの様々な物理モデルのシミュレーションを行うための、 無償で使用できるオープンソースシミュレーションソフトウェアである。有限要素法は、対象のモデルを微小領域(要素)に分割し、要素ごとに微分方程式に従って数値を計算することで、複雑な形状でも全体の物理量をシミュレーションできる。Elmer のシミュレーションの流れを以下に示す。

- a. シミュレーション対象のジオメトリを作成する。
 (寸法、形状などを設定する。)
- b. 設定したジオメトリを微小領域に分割する。
 (メッシュに分割する。)
- c. 各領域の物理パラメータや使用する方程式を 設定し、シミュレーションを実行する。
- d. 可視化ソフトを用いてシミュレーション結果 を確認する。

2. 1. 直方体磁性体まわりの磁場シミュレーション

まずは単純な形状の磁性体モデルを対象に、Elmer により磁性体まわりの磁場強度についてシミュレー ションを行った。磁性体は5×5×50[mm]とし、磁場を シミュレーションする解析領域を 100×100×100[mm] とした。図1は、設定した磁性体と解析領域を示して おり、磁性体は解析領域の中心に配置した。

次に、ジオメトリをメッシュに分割する。図2は、 分割後のメッシュデータを示している。要素の形状は 四面体とし、要素数は約200万弱になる。中心部には ネオジム磁石としての領域が5×5×50[mm]の範囲で 区切られており、周りの空間とは別領域として区別さ れる。

図1 シミュレーション対象の磁性体と解析領域

図2 分割後のシミュレーション対象

Elmer でシミュレーションを実行するため、物理パ ラメータを設定する。磁性体はネオジム磁石とし、比 透磁率 μ_r を1.05、磁化の値を表す残留磁束密度 *B*を 1.22[T]と設定した。しかし、Elmer では磁化の値は磁 場の強さ *H*で与えるため、*B*=1.22[T]を変換し、 *F*970,876[A/m]とし、磁化の向きは磁性体の長手方向 である+z 方向とした。磁場の解析領域は空気とし、そ の外側の境界面で磁場の強さが 0[A/m]となるように 境界条件を設定した。

シミュレーションにより得られた磁束密度分布の結 果は、可視化ソフトである ParaView²⁾を用いて可視化 を行った。図3は、解析領域において Y=0 のときの z-x 平面における磁束密度ベクトルを表示したものである。 大きい白い矢印は、その近傍でのおおまかな磁束密度 ベクトルの向きを表している。磁束密度ベクトルは磁 性体右端から放射状に広がり、磁性体左端へと収束し ている。磁性体の磁化方向は+z 軸方向に与えたので、 磁性体右端がN極、左端がS極に対応しており想定ど おりの分布となっている。また、ParaViewでは任意の 線上における値をプロットすることができる。図4は、 磁性体の中心をz軸方向に貫く線上の、磁性体の右端 から解析領域の終わりまでの範囲で、磁束密度の大き さをプロットしたグラフである。磁性体からの距離が 離れるにつれ、磁束密度の大きさは小さくなることが 確認できる。

図3 Elmer による磁束密度分布

2.2.チャージモデルによる計算値との比較

Elmer によるシミュレーション結果の値の妥当性を 評価するため、理論計算値との比較を行った。円柱や 直方体など単純な形状で、一様に磁化している永久磁 石からある距離における点での磁束密度は、チャージ モデル³⁾により計算できる。底面が $a[m] \times b[m]$ の長 さ $L[m]の永久磁石で、長手方向に B_[T]で磁化してい$ る直方体の場合、上面から距離 <math>I[m]の点での磁束密度 B[T]は(1)式で与えられる。

$$B = \frac{B_r}{\pi} \left[\tan^{-1} \frac{ab}{2l\sqrt{4l^2 + a^2 + b^2}} - \tan^{-1} \frac{ab}{2(l-L)\sqrt{4(l+L)^2 + a^2 + b^2}} \right]$$
(1)

Elmer でシミュレーションを行った 5×5×50[mm]の 直方体の磁性体の各パラメータは、*æb*=0.005[m]、 *L*=0.05[m]、*B*=1.22[T]となり、式(1)に代入すると、 上面からの距離 *l*を変数にし、磁束密度の分布が得ら れる。図5にチャージモデルによる磁束密度分布の計 算値とElmer によるシミュレーション値の結果を比較 したグラフを示す。Elmer による磁束密度のシミュ レーション値は、チャージモデルによる計算値と同様 に小さくなり、理論計算と一致することが確認できた。

2. 3. AMaze とのシミュレーション結果比較

Elmer によるシミュレーション結果の妥当性をさら に評価するため、他の有償シミュレーションソフト AMaze⁴⁾によるシミュレーション結果と比較した。 AMaze は Elmer と同じく有限要素法により、様々な物 理モデルのシミュレーションを行うことができる、有 償のシミュレーションソフトウェアである。AMaze に おける設定は Elmer 同様、5×5×50[mm]の直方体の磁 性体を 100×100×100[mm]の解析領域に配置し、比透 磁率 μ_r =1.05、磁化の値は Elmer と違い、残留磁束密度 をそのまま入力できるため *B*=1.22[T] とした。

図6はAMazeによるシミュレーション結果であり、 Y=0 における z-x 平面の磁束密度の大きさをカラー マップで、向きをベクトルで表示したものである。図 3同様、大きい白い矢印は、その近傍でのおおまかな 磁束密度ベクトルの向きを表している。

Elmer の結果と同じように磁束密度ベクトルがネオ ジム磁石の右端から放射状に広がり、左端へと収束す るのがわかる。

AMaze では、Elmer と同じく図4のように磁束密度の 強度分布を解析することができる。図7に Elmer と AMaze の磁束密度強度分布の比較を示す。これより、 Elmer において、AMaze と同様の磁束密度の強度分布が 得られることを確認できた。

図 6 AMaze による磁束密度分布

2. 4. 円柱アルニコ磁石の磁束密度測定

ここでは円柱アルニコ磁石まわりの磁束密度測定に ついて説明する。磁束密度測定にはガウスメータを用 い、アルニコ磁石は直径 8[mm]、長さ 50[mm]の円柱形 状のものを用いた。図8に磁束密度測定の様子を示す。 ガウスメータをアルニコ磁石の円柱上面より離して いったときの磁束密度の強度分布を測定した。

この実験結果と比較するため、実験で用いたアルニ コ磁石を対象に、Elmer による磁性体まわりの磁束密 度強度分布シミュレーションを行った。まずは実験で 用いたアルニコ磁石と同じ寸法で同じメッシュデータ を作成した。つぎにアルニコ磁石の残留磁束密度につ いて、チャージモデルによる理論計算値から算出した。 底面の円が直径 *D*[m]、高さ *L*[m]の永久磁石で、高さ方 向に *B*[T]で磁化している場合、高さ方向の上面から 距離 *I*[m]の点での磁束密度 *B*[T]は、円柱のチャージモ デルにより(2)式で表される。

$$B = \frac{B_r}{2} \left[\frac{(l-L)}{\sqrt{(l+L)^2 + \frac{D^2}{4}}} - \frac{l}{\sqrt{l^2 + \frac{D^2}{4}}} \right]$$
(2)

残留磁束密度 *B*を求めるためには、上面からの距離 *I*[m]における磁束密度 *B*[T]がわかればよい。 *I*=0.03[m]のときのガウスメータによる実験値 *B*=3.4[mT]を用いて(2)式より計算すると、*B*= 900[mT]となるので、Elmerにはアルニコ磁石の磁化の 値として、900[mT]= 716,220[A/m]を設定した。また、 比透磁率 μ_r について、こちらも不明であったため、 μ_r の値を振ってシミュレーションを行い、上面から 30[mm]の位置での実験値と合うように設定した。 フィッティングの結果、実験に用いたアルニコ磁石の 比透磁率 μ_r =1.4 となった。

図8 円柱アルニコ磁石の磁束密度測定

図9にガウスメータによる実験値とそれに対応する Elmer のシミュレーション値を比較したグラフを示す。 全体として、実際の磁場分布をよく再現できているこ とが確認できた。

図9 Elmer とガウスメータによる磁束密度測定値の比較

3. 結言

本開発支援では、オープンソースソフトウェアである Elmer を用いて、永久磁石まわりの磁場分布を解析 するための手法を調査し、結果の妥当性について評価 した。

Elmer によるシミュレーション結果は、チャージモ デルによる理論計算や他の有償のシミュレーションソ フトによる結果と一致した。また、アルニコ磁石を用 いたガウスメータによる磁束密度測定の結果もよく再 現していることを確認した。

以上の結果より、Elmer を用いて予め磁束密度分布 をシミュレーションすることで、開発段階の試作と実 験を軽減でき、設計・開発の効率化を図ることができ ると考えられる。

4. 謝辞

シミュレーションソフト AMaze の使用にあたっては、 福島大学共生システム理工学研究科の山口克彦教授に 多大なるご協力をいただきました。またシミュレー ションの実行にあたり、条件の設定や結果に対する考 察などご助言をいただきました。ここに心より感謝申 し上げます。

参考文献

- 1) "Elmer 公式サイト", https://www.csc.fi/web/elmer/ (参照 2020-12-25)
- "ParaView 公式サイト", https://www.paraview.org/(参照 2020-12-25)

- 3) "永久磁石 · 株式会社トーキン", https://www.tokin.com/product/pdf_dl/eikyu_jisy aku.pdf (参照 2020-12-25)
- 4) "3次元有限要素法解析 AMaze", http://www.asl-i.com/contents/soft/amaze/ (参照 2020-12-25)